Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jin-Chang Ding, Xiao-Bo
 Huang,* Hua-Yue Wu, Miao-Chang Liu and Mao-Lin Hu

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang Wenzhou 325027, People's Republic of China

Correspondence e-mail:
xiaobhuang@hotmail.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.066$
$w R$ factor $=0.153$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(Z)-Ethyl 3-(4-methoxyphenyl)-2-[(triphenyl-phosphoranylidene)amino]prop-2-enoate

The title compound, $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{P}$, containing four planar ring systems, exists in the Z form. Short intramolecular C…O [2.697 (3) A] and C $\cdots \mathrm{N}[3.049$ (4) Å] contacts may indicate the presence of weak intramolecular hydrogen bonds.

Comment

The readily available iminophosphoranes have become useful building blocks in strategies directed towards the synthesis of nitrogen-containing heterocycles (Fresneda \& Molina, 2004). For example, the title compound, (I), is an intermediate in the preparation of imidazolinone, which exhibits fungicidal and herbicidal activities (Yang et al., 2004). More than 1200 crystal structures involving iminophosphorane groups have been published, including a recent report from our laboratory (Huang et al., 2005).

(I)

Compound (I) contains four planar benzene rings, three of which, $\mathrm{C} 13-\mathrm{C} 18(A), \mathrm{C} 7-\mathrm{C} 12(B)$ and $\mathrm{C} 1-\mathrm{C} 6(C)$, belong to the triphenylphosphine group. The dihedral angles $A / B, A /$ C and B / C are 55.7 (1), 84.7 (1) and 78.6 (1) ${ }^{\circ}$, respectively.

Bond lengths and angles in the title compound (Table 1) are unexceptional and compare well with those in (Z)-ethyl 3-methoxyphenyl-2-[(triphenylphosphoranylidene)amino]prop-2-enoate (Huang, et al., 2005). The short intramolecular contacts $\mathrm{C} \cdots \mathrm{O}$ and $\mathrm{C} \cdots \mathrm{N}$ (Table 2) may indicate the presence of weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Experimental

The title compound was synthesized in 76% yield by the Staudinger reaction of ethyl β-azidoacetate with triphenylphosphine at room temperature (Molina et al., 1993). Single crystals suitable for X-ray data collection were obtained by slow evaporation of an ethanol solution (m.p. 405-407 K). IR (KBr): 2976, 1686, 1597, 1418, $1232 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (chloroform- d, p.p.m.): 8.19-6.85 ($\mathrm{m}, 19 \mathrm{H}$), 6.79 $(d, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.91(q, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.85(s, 3 \mathrm{H}), 1.03(t, 3 \mathrm{H}, J=$

Received 14 March 2005
Accepted 1 April 2005
Online 9 April 2005
7.0 Hz); ${ }^{13} \mathrm{C}$ NMR (chloroform-d, p.p.m.): 168.83, 158.40, 135.30, 135.21, 134.50, 133.14, 133.01, 131.86, 131.61, 131.57, 131.41, 128.91, $128.75,117.37,117.11,113.88,61.34,55.92,14.80$.

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{P}$
$M_{r}=481.50$
Monoclinic, $P 2_{1} / c$ c
$a=10.1565$ (11) £
$b=18.879$ (2) \AA
$c=14.2904(15) \AA$
$\beta=107.548$ (2) ${ }^{\circ}$
$V=2612.6(5) \AA^{3}$
$Z=4$

$$
D_{x}=1.224 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 2681 reflections
$\theta=2.4-24.1^{\circ}$
$\mu=0.14 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colorless
$0.33 \times 0.27 \times 0.16 \mathrm{~mm}$
Data collection
Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.956, T_{\text {max }}=0.979$
13808 measured reflections
4701 independent reflections
3736 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-12 \rightarrow 12$
$k=-22 \rightarrow 20$
$l=-17 \rightarrow 14$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0599 P)^{2}\right. \\
& +1.1204 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.37 \mathrm{e}_{\mathrm{m}}{ }^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.153$
$S=1.12$
4701 reflections
318 parameters
H -atom parameters constrained

Figure 1
The molecular structure of (I), with the atom numbering scheme, showing displacement ellipsoids at the 50% probability level.
$1.2 U_{\text {eq }}$ (parent atom), $\mathrm{C}($ methylene $)-\mathrm{H}=0.97 \AA$ with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}($ parent atom $)$, and $\mathrm{C}($ methyl $)-\mathrm{H}=0.96 \AA$ with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

The authors acknowledge financial support by the Wenzhou Bureau of Science and Technology of China (grant No. G 2004053).

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Fresneda, P. M. \& Molina, P. (2004). Synlett, pp. 1-17.
Huang, X. B., Liu, M. C., Wu, H. Y., Ding, J. C. \& Hu, M. L. (2005). Acta Cryst. E61, o280-o281.
Molina, P., Pastor, A. \& Vilaplana, M. J. (1993). Tetrahedron, 49, 7769-7778.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yang, F. L., Liu, Z. J., Huang, X. B. \& Ding, M. W. (2004). J. Heterocycl. Chem.

41, 77-83.

The H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $\mathrm{Csp} p^{2}-\mathrm{H}=0.93 \AA$ with $U_{\text {iso }}(\mathrm{H})=$

